Benefits of Deburring Stainless Steel & Other Metal Alloys

The electropolishing process is well-suited for deburring. During the process, the transfer of metal ions occurs most rapidly on corners or edges of metal parts. Current density or concentration of electrochemical power is greatest at high points, just as lightning is drawn to tall trees and buildings. This helps explain why plating builds metal faster on an edge or burr, while electropolishing (the “reverse” of plating) removes metal fastest at these points.

Differences in Deburring Methods

Properly controlled, the electropolishing process can remove burrs from incredibly complex or fragile parts that do not lend themselves to conventional tumbling or vibratory finishing techniques. The process is best suited for parts having fine blanking, milling, broaching, lapping or grinding burrs. Since electropolishing is non-mechanical, it is important to note that the hardness of a metal part has no bearing on the burr removal. The process works equally well on a fully annealed or hardened part. This is one reason why electropolishing is often specified as a final deburring and finishing process after all fabrication and heat treating processes.

The fact that electropolishing is a non-distorting process is often overlooked. Many metal parts produced today have critical microfinishes or are made from lighter, more fragile materials. In those cases, mass finishing techniques such as tumbling or vibra-finishing create distortion or warping, and can nick or scratch fine finishes. Electropolished parts are never subjected to stress from polishing media, nor are they impinged or tumbled onto each other.

Treating Large Burrs Before Electropolishing

It is important to note that deburring is limited based on burr size, component configuration and amount of stock removal. Larger burrs produced in rough milling or displaced metal from drilling operations often need pre-treatment using other methods. In addition, heavy die break burrs caused by improper tooling maintenance are difficult to remove with electropolishing alone.

 

Whitepaper: Advantages of Electropolishing for Deburring Metal Parts

Electropolishing, with its ability to remove a microscopically precise layer of surface material with consistent results, is the finishing process of choice for such parts, for many reasons. Learn why electropolishing is more effective than other methods for removing burrs.

Download Whitepaper

Whitepaper: Electropolishing for Significantly Improved Corrosion Resistance

Discover why one of the most common applications for electropolishing is to enhance corrosion resistance on a wide variety of metal alloys, specifically stainless steel. These two case studies show why electropolishing has become a replacement process for passivation.

Download whitepaper

 

Stainless Steel Deburring

Do your stainless steel parts have extra material or burrs? Able Electropolishing can help. Through our proprietary electropolishing or reverse plating process, we have been deburring stainless steel and many other alloys since 1954. Our staff of knowledgeable technicians are dedicated to finding the most cost-effective methods for removing burrs from stainless steel. We can provide deburring services for stainless steel even in the most hard to reach areas –and we can do all this without affecting the strength or structure of your valuable steel parts.

At Able, we implement a wide assortment of techniques to remove burrs from stainless steel. During the process, the transfer of metal ions occurs most rapidly on corners or edges of metal parts. Current density or concentration of electrochemical power is greatest at high points, just as lightning is drawn to tall trees and buildings. This helps explain why plating builds metal faster on an edge or burr, while electropolishing (the “reverse” of plating) removes metal fastest at these points.

Benefits of Metal & Stainless Steel Deburring

Properly controlled, the electropolishing process can remove burrs from incredibly complex or fragile parts that do not lend themselves to conventional tumbling or vibratory finishing techniques. Since electropolishing is non-mechanical, it is important to note that the hardness of a metal part has no bearing on the burr removal.

Additionally, since electropolishing is a non-distorting process, your stainless steel parts are never subjected to stress from polishing media, nor are they impinged or tumbled onto each other.

Case Study 1: Electropolishing Stainless Steel Surgical Tool

The 400 series stainless steel component pictured is the inner portion of a dual drill bit assembly used for surgery on the human brain. Grinding and/or machining burrs prevent the mating parts from freely rotating (one bit within the other), while burrs specifically on cutting edges reduce ease and rate of cutting. Increased pressure on the drill bit due to contaminated cutting edges affects the functionality of the cutting device’s clutching mechanism; the sharpness of the bit is tied directly to the function of the rest of the device. In addition, if not properly removed, burrs may flake or chip off causing a potential bio-hazard for the patient.

Deburring - Case Study 1

By precisely removing .0005″ +/-.001″ total material off of the drill bit’s O.D., electropolishing the stainless steel part preserves edge condition while removing problematic burrs. As in this application, electropolishing is often a superior alternative to hand deburring; the electropolishing process offers greater consistency from part to part, and is significantly more cost effective. Deburring the part while maintaining sharp cutting edges, electropolishing allows the cutting device to function smoothly, efficiently and safely.

Case Study 2: Electropolishing Stainless Steel Vegetable Peelers

Deburring - Case Study 2

The part pictured is a 420 stainless blade used on high-end vegetable peelers. After the grinding operation, the blade edges are left sharp, but ragged. Pictured parts on the left side of the page illustrate the burrs post-grinding. The grinding burrs need to be removed in order for the blade to slide and cut smoothly—it is also important for this product to be clean and free of any metal shavings, as it comes into direct contact with food. After researching various deburring options, the manufacturer of this high volume product found electropolishing to be the most consistent and cost effective method to finish the blade component of the peeler. As the final operation, electropolishing is useful for both deburring and cleaning the part. In this case, .002″ total material is removed from the thickness of the blade which, after extensive sampling, was proven to be the optimal amount of removal. Once electropolished, the blades are burr-free and sharper than in the “as-ground” condition.

Contact us to learn more about electropolishing and deburring

Learn About the Electropolishing Difference


Electropolishing 101 Webinar

Electropolishing 101
Lunch & Learn Webinar

Learn everything you need to know about electropolishing as part of a private, interactive webinar. Let us know your availability and your part issues and our electropolishing experts can get you on our schedule. Lunch will be provided!

Schedule Your Private Webinar
Try Electropolishing for Free: Sample Request

Try Electropolishing for Free:
Sample Request

Send us your parts/prototypes and we’ll electropolish them for free – we’ll even pay for the shipping! Samples are processed in 24-48 hours.

Request a Sample

Medical Device Manufacturing

Medical Device Manufacturing

From implantable devices to surgical instruments, electropolishing is a single-process treatment that results in biocompatible, safe and ultra clean parts.

Learn More  

Aerospace

Aerospace

We offer aerospace vendors and original equipment manufacturers our signature metal finishing services to increase fatigue-resistance for their metal parts, rendering them capable of withstanding the stress and corrosion that comes with long-term use.

Learn More  

Pharmaceutical

Pharmaceutical

Our strict adherence to industry standards ensures that pharmaceutical components are electropolished in accordance with ASTM B912 and ASME BPE specifications. These products are clean and smooth, corrosion resistant and contaminant free.

Learn More  

Automotive

Automotive

Corrosion resistance and microfinish improvement are essential for critical automotive parts, making electropolishing an increasingly beneficial option for automakers.

Learn More  

Consumer Appliance

Consumer Appliance

Our metal finishing services help increase corrosion resistance for these parts, and by removing the outermost layer of metal withelectropolishing the durability and longevity of these appliance components is increased.

Learn More  

Food & Beverage

Food & Beverage

Electropolishing materials for this industry eliminates the buildup of bacterial biofilms, as well as keeping the equipment free of contaminants like Salmonella. Electropolishing delivers the level of sanitation required by a number of regulatory agencies.

Learn More  

Hydraulics & Pneumatics

Hydraulics & Pneumatics

From robotics to mobile equipment, the uses of electropolishing in the hydraulics and pneumatics industry are many. By helping prevent premature part failure, electropolishing reduces downtime and increases the life cycle of these components.

Learn More  

Electronics

Electronics

Improving conductivity and performance is just one benefit electropolishing offers for electronics parts. The surface finish is improved by as much as 50%, removing imperfections from the material without material removal.

Learn More  

Electropolishing, Passivation and Metal Surface Analytics Blog

AS9100:2016: Quality Assurance in Aerospace

Precision and reliability are non-negotiable standards in the aerospace industry, where every component must meet strict requirements for performance, durability, and safety.

Metal Finishing Precision with JCM-7000 SEM

With the addition of a fourth-generation tabletop Scanning Electron Microscope (SEM), Able’s state-of-the-art suite of analytic tools continues to grow to meet the requirements of high quality finishing for increasingly sophisticated metal parts.

Passivation for Stainless Steel Parts

Stainless steel alloys are prized by manufacturers across industries for their durability and corrosion resistance. Unfortunately, when free iron isn’t removed from the surface of stainless steel parts after machining or stamping, the inherent benefits of stainless alloys diminish: contaminated…

Electropolishing for More Durable Metal Springs

Springs may seem like simple components, but their role in countless applications — from medical devices to aerospace— demands perfection. Even the slightest defect in the metal surface can drastically shorten a spring’s lifespan or lead to catastrophic failure in…